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Abstract

This paper proposes a four-pronged approach to efficient Bayesian estimation and

prediction for complex Bayesian hierarchical Gaussian models for spatial and spa-

tiotemporal data. The method involves reparameterizing the variance/covariance struc-

ture of the model, reformulating the means structure, marginalizing the joint posterior

distribution, and applying a simplex-based slice sampling algorithm. The approach

permits fusion of point-source data and areal data measured at different resolutions

and accommodates non-spatial correlation and variance heterogeneity as well as spa-

tial and/or temporal correlation. The method produces Markov chain Monte Carlo

samplers with low autocorrelation in the output, so that fewer iterations are needed

for Bayesian inference than would be the case with other sampling algorithms.

Keywords: Bayesian inference, data fusion, hierarchical models, Markov chain Monte

Carlo, slice sampling
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1. INTRODUCTION

Data measured over space and time are essential resources for addressing research questions in

environmental science, epidemiology, econometrics, and many other disciplines. Using such

data for inference and prediction presents both statistical and computational challenges.

As an example, suppose that one wished to predict and map uranium concentrations in

the surface soil and rocks over the state of Connecticut, and to quantify the uncertainty in

the mapped values. Two kinds of relevant data were produced by the National Uranium

Resource Evaluation (NURE), a program initiated by the Atomic Energy Commission (now

the Department of Energy) in 1973 to identify uranium resources in the United States. One

type is areal data — county averages of surficial uranium produced from aerial radiometric

surveys. The other is point-site data — measurements of the concentration of uranium

in soil and stream sediment measured at specific locations. The units for both types of

measurements are parts per million (ppm). This article proposes a unified framework for

analyses combining such data.

The departure point for the unified framework is the simple geostatistical model, which

provides a natural and interpretable way to model data (such as the soil and sediment

values) measured at irregularly-spaced point sites. Let {Y (si) : si ∈ D, i = 1, . . . , n} be

the observed point-referenced data over a spatial domain D. Suppose that a p× 1 covariate

vector X(si) can be used to model the large-scale variation, or spatial trend, of Y (si).

Let Y = {Y (s1), . . . , Y (sn)}> and X = {X>(s1), . . . , X
>(sn)}>. A Gaussian geostatistical

model for Y consists of spatial trend, spatial correlation, and measurement error:

Y = Xβ + Z + ε,

Z ∼ N
(
0, σ2

zΩ(φ)
)
, ε ∼ N(0, σ2

eI),
(1)

where β is a p× 1 vector of covariate coefficients, Z is an n× 1 vector capturing the spatial

correlation, and ε is a n× 1 vector of independent and identically distributed measurement

errors. The distribution of Z is multivariate normal with mean zero and covariance matrix

σ2
zΩ(φ), where Ω(φ) is the correlation matrix as a function of parameter vector φ. In general,
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the correlation of Z(si) and Z(sj) is modeled as a function of the distance, and possibly

orientation, between sites si and sj. Although model (1) is presented in the context of

spatial data, the notation remains the same when there is a temporal component, except

that the parameter vector φ contains additional elements for temporal correlation. Yan,

Cowles, Wang, and Armstrong (2007) proposed a reparametrized and marginalized posterior

sampling (RAMPS) algorithm to make efficient Bayesian inferences for model (1).

In this paper, we extend the model in (1) to accommodate areal data and data with non-

spatial correlation, to permit simultaneous modeling of data with different measurement-

error variances and different spatial variances, and to perform prediction. We propose an

efficient MCMC sampling algorithm based on reparameterization of the variance/covariance

structure, reformulation of the means structure, and a simplex-based slice sampling algo-

rithm. Finally, we apply the approach to producing maps of surficial uranium concentrations

in Connecticut.

2. ACCOMODATING DATA FUSION AND NON-SPATIAL

HETEROGENEITY

Model (1) is inadequate for the example analysis of combined areal and point-source data

on uranium concentrations, where data fusion is needed. Another frequently encountered

complexity in real data, although not in the uranium example, is non-spatial heterogeneity,

which occurs when variability and correlation other than spatial covariance and independent

measurement error are present in the data. An example of both data fusion and non-

spatial heterogeneity is Smith and Cowles (2007), who combined areal data (county averages

of uranium radiation) with point-source data (long-term radon measurements in specific

homes). To capture correlation between multiple radon measurements on the same home,

a random offset to the intercept for each home was included in the model. We now extend

model (1) to accommodate such analyses.
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2.1 A Unified Model Framework

Consider n observed values Y = {Y1, . . . , Yn}> and S spatial sites in the same spatial do-

main. The observation vector Y of length n may contain both areal and point-source data.

The S spatial sites may include: 1) locations at which observed point-source measurements

were made; 2) points on a regular grid, which will be treated as the locations of point source

measurements that were averaged to produce the areal averages; and 3) sites at which pre-

diction is desired. Our extended Gaussian geostatistical model for Y consists of fixed effects,

non-spatial random effects, spatial random effects, and measurement error:

Y = Xβ + Wγ + KZ + ε,

γ ∼ N(0, Ωγ), Z ∼ N(0, ΩZ), ε ∼ N(0, Ωε),
(2)

where β is a p× 1 vector of regression coefficients, γ is a q× 1 vector of non-spatial random

effects, Z is an S × 1 vector of spatial random effects, ε is an n × 1 vector of measurement

errors, and the matrices X, W , and K are design matrices for fixed effects, non-spatial

random effects, and spatial random effects. The matrix K is defined by

Kij =


1, Yi is a point source datum measured at site j,

1
Ni

, site j is one of Ni sites contributing to areal average Yi,

0, otherwise.

If Yi is a point-source measurement, then Ni = 1. If Yi is an areal average, then Ni is roughly

proportional to the area of the region over which the measurement Yi is averaged. The finer

the grid of sites used, the closer the proportionality will be.

The variance matrices Ωγ, ΩZ , and Ωε need to be specified in detail. An obvious re-

quirement for Ωε is to allow different data points in Y to have different measurement-error

variances to accommodate fusing data measured using different methods, areal and point

source data, etc. In particular, estimation of the measurement-error variance associated

with areal data will be affected by the weights attributed to the areal averages. If actual

areas of the regions are used, then the units (square miles versus square kilometers, etc.)
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will determine the estimate of measurement-error variance. If the number of grid points Ni

is used as a surrogate for the area, then the resolution of the grid will affect the estimate;

the finer the grid, the larger the estimate. Therefore, even if the areal and point source

data represent measurements of the same underlying process, separate measurement-error

variance parameters should be used for them. For the greatest generality, we also allow for

different spatial variances at different sites (possibly due to nonstationarity of the spatial

covariance) and different variances for the non-spatial random effects.

Suppose that there are Lγ types of variance of the non-spatial random effects σ2
γ,i, i =

1, . . . , Lγ; LZ types of spatial variance σ2
Z,i, i = 1, . . . , LZ , and Lε types of measurement

error variance σ2
ε,i, i = 1, . . . , Lε. Further, let ri, i = 1, . . . , q, take on an integer value

between 1 and Lγ to index which of the Lγ types of random-effect variance goes with random

effect γi. Similarly, let vi, i = 1, . . . , S, index which of the LZ types of spatial variance

goes with site i and mi, i = 1, . . . , n index which of the Lε types of measurement error

variance is associated with with observation Yi. We construct vectors for componentwise

variances of γ, Z, and ε, respectively, as Vγ = {σ2
γ,r1

, . . . , σ2
γ,rq
}>, VZ = {σ2

Z,v1
, . . . , σ2

Z,vS
}>,

and Vε = {σ2
ε,m1

/w1, . . . , σ
2
ε,mn

/wn}>, where wi, i = 1, . . . , n, is the weight associated with

observation i. The weight wi will be 1 for point-source data, and for areal data, either (a) the

number of point-source measurements contributing to the areal average (if known), (b) the

area of the region, or (c) the number of grid points Ni. Assuming all these types of random

effects are mutually independent, we have Ωγ = diag(Vγ), ΩZ = diag(V
1/2
Z )Σ(φ)diag(V

1/2
Z ),

and Ωε = diag(Vε), where Σ(φ) is a spatial correlation matrix with parameter vector φ. The

likelihood is specified by

Y ∼ N
(
Xβ, WΩγW

> + KΩZK> + Ωε

)
. (3)

An equivalent specification of the likelihood that expedites MCMC sampling for prediction

is given in Section 3. The reparameterization discussed in Section 2.2 is the same in both

settings.
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2.2 Reparameterizing the variance parameters

The RAMPS algorithm reparameterizes the variance parameters. Concatenate the vectors

of measurement error variances, spatial variances, and random effects variances for a total

of F = Lγ + LZ + Lε variance parameters, σ2
1, . . . , σ

2
F . If there are one measurement-

error variance, one spatial variance, and no random effects variances, then σ2
1 ≡ σ2

e and

σ2
2 ≡ σ2

z as in the special case of Yan et al. (2007). Our reparameterization is in terms of

κ = {κ1, . . . , κF}> and σ2
tot, where

σ2
tot =

F∑
j=1

σ2
j , and κj =

σ2
j

σ2
tot

, j = 1, 2, . . . , F. (4)

Note that κF ≡ 1−
∑F−1

j=1 κj and is not a free parameter to be estimated. Let κγ = Vγ/σ
2
tot,

κZ = VZ/σ2
tot, and κε = Vε/σ

2
tot. Then the likelihood is specified as

Y ∼ N
(
Xβ, σ2

totΩ
)

(5)

where Ω = Wdiag(κγ)W
> + Kdiag(

√
κZ)Σ(φ)diag(

√
κZ)K> + diag(κε).

2.3 Prior densities under reparameterization

Prior distributions on θ = (φ, κ, σ2, β) complete the Bayesian model specification. The

semiconjugate prior on β given σ2
tot is

β|σ2
tot ∼ N

(
µβ, σ2

totΣβ

)
(6)

If the modeler prefers to specify the prior for β conditional on one of the individual variances

σ2
i rather than on σ2

tot, then κi becomes an additional multiplicative factor in the prior

variance of β. Placing an independent, flat, improper prior on each element of β corresponds

to letting the diagonal entries of Σβ go to infinity.

We place independent priors, each with bounded support, on the spatial correlation

parameters φ. To date we have used uniform priors over an appropriately chosen region.

For example, if φ is the range parameter in a spatial correlation function, the boundaries of
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the uniform distribution represent the largest and smallest reasonable values of the effective

range.

To construct priors on σ2
tot and κ, suppose that independent inverse gamma (IG) priors

with have been placed on each variance σ2
j . Then the joint prior density induced on κ and

σ2
tot is

p(κ1, κ2, . . . , κF−1, σ
2
tot) =

F∏
j=1

[
bj

Γ(aj)

1

κ
aj+1
j

]
1

(σ2
tot)

PF
j=1 aj+1

exp

(
− 1

σ2
tot

F∑
j=1

bj

κj

)
.

This joint density may be factored into the product of a marginal density for κ and a

conditional density for σ2
tot given κ. The marginal density is

p(κ1, κ2, .. . . . , κF−1) =
F∏

j=1

[
bj

Γ(aj)

1

κ
aj+1
j

]
Γ
(∑F

j=1 aj

)
(∑F

j=1
bj

κj

)PF
j=1 aj

and the conditional density p(σ2
tot|κ) is IG with parameters

∑F
j=1 aj and

∑F
j=1 bj/κj. If F = 2

and b1 = b2 then the marginal density of κ1 simplifies to a Beta density. However, if F > 2

then the marginal density of κ does not simplify to a Dirichlet even if all the bj, j = 1, . . . , F

are equal.

3. REFORMULATING THE MEANS STRUCTURE FOR PREDICTION

Commonly, instead of, or in addition to, estimating model parameters, the research goal is

to predict the underlying values of the spatial process and/or data values at measured or

unmeasured locations. These locations may include some or all of the sites at which data

values have been observed, or they may consist entirely of sites for which no observed data

values (point-site or areal) are available.

To facilitate the prediction algorithm described in Section 5, we reorder and partition

the vector of observed data values and the vector of spatially correlated random effects as

follows. Reorder Z as (Z>
p , Z>

u )>, where Zp is the vector of spatial random effects at sites

for which prediction is desired, and Zu is the vector of spatial random effects at sites where

prediction is unneeded. For a computational benefit which becomes clear later, we reorder
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Y as (Y >
1 , Y >

2 )> such that the design matrix K becomes block triangular, with the columns

of K conformable to the reordered Z. We then reorder the measurement errorvector ε, and

the design matrices X and W comformably to write the model as Y1

Y2

 =

 X1 K1,1

X2 K2,1

 β

Zp

+

 0

K2,2

Zu +

 W1

W2

 γ +

 ε1

ε2

 .

Note that Y1 is the vector of data values in Y that are associated exclusively with Zp while

Y2 is the vector of data values in Y that are associated with both Zp and Zu, or Zu alone.

In the manner of structured MCMC (SMCMC) (Hodges 1998; Sargent, Hodges, and

Carlin 2000), all model stages involving the means structure can be reformulated as a single

linear model: 

Y1

Y2

0

µβ


=



X1 K1,1

X2 K2,1

0 −I

I 0


 β

Zp

+



W1γ + ε1

K2,2Zu + Wbγ + ε2

εzp

εβ


, (7)

In a compact form, denote the model as

Y = XB + E.

Here Y is a vector of known values, X is a design matrix of known values, B contains all

the unknown means-related parameters for which estimation or prediction is required, and

E is a vector of multivariate normal variate with mean 0 and covariance matrix σ2
totΩ with

Ω =



W1ΩγW
>
1 + Ωε;1,1 0 0 0

0 K2,2ΣZ;u,uK
>
2,2 + W2ΩγW

>
2 + Ωε;2,2 ΣZ;2,1K

T
2,2 0

0 KT
2,2ΣZ;p,u ΣZ;p,p 0

0 0 0 Σβ


. (8)

The advantage of decomposing of Y into Y1 and Y2 is that it leads to a block diagonal Ω,

which facilitates matrix operations.
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Note that if prediction is not desired, then Y1, Zp, K1,1 and K2,1 all will be null; thus in

this case the expression simplifies to: Y

µβ

 =

 X

I

[ β
]

+

 KZ + Wγ + ε

εβ

 (9)

or

Y = Xβ + E,

and the covariance matrix of the error vector E becomes σ2
totΞ with

Ξ =

 KΣZK> + WΩγW
> + Ωε 0

0 Σβ

 . (10)

Furthermore, if Σβ in (6) is allowed to go to infinity, then the corresponding blocks of Ω−1

and Ξ will go to zero, and the rows of Y, X, and E corresponding to µβ will have no effect

on the computations in Section 5. Thus these rows can be omitted from the specification

altogether when independent, improper priors are used on the elements of β.

The Bayesian model is completed with specification of prior densities on θ as described

in Section 2.3.

4. SLICE SAMPLING ON A SIMPLEX

In developing a Markov chain Monte Carlo algorithm for sampling from the posterior and

predictive distributions described in the preceding sections, special attention to the param-

eters {κ1, κ2, . . . κF} defined in 4 is required. The remainder of this section describes the

“SIMPLICE” algorithm, which is a component of the RAMPS algorithm for fitting the

general model described in the preceding sections.

4.1 Simplexes

Consider drawing samples from the posterior distribution of a vector-valued parameter x =

{κ1, x2, . . . , xF} such that 0 < xj < 1 for j = 1, . . . , F and
∑F

j=1 xj = 1. The support of

the posterior distribution of such a parameter is the standard (F − 1)-simplex — that is,
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the regular simplex with vertices {e1, . . . , eF}, where eij = 0 for j 6= i and eij = 1 for j = i.

For example, the standard 1-simplex is the line segment connecting (1,0) and (0,1), and the

standard 2-simplex is the equilateral triangle with vertices e1 = (1, 0, 0)>, e2 = (0, 1, 0)>,

and e3 = (0, 0, 1)>. An edge of a simplex is a line segment connecting two adjacent vertices.

A regular simplex has all edges of equal length. Sampling uniformly from the standard

(F − 1)-simplex is equivalent to sampling from the Dirichlet distribution with parameters

α = {α1 = 1, α2 = 1, . . . , αF = 1}. Note that in the case of a 1-simplex, this is the Beta(1, 1),

or standard uniform, distribution.

Any point in the interior of a simplex may be expressed as a convex combination of the

vertices of the simplex. The coefficients of the vertices in the convex combination are called

the barycentric coordinates of the point. Let V = (v1, . . . , vF ) be the matrix of vertices

in Cartesian coordinates of an (F − 1)-simplex. Let T = (t1, . . . , tF )> be the vector of

the barycentric coordinates of a point in the simplex. Then the Cartesian coordinates of

the point are given by the map (see, for example, Hörmann, Deydold, and Derflinger 2004,

Algorithm 1.10, p.257):

T 7→
∑

i

tivi = V T. (11)

Thus, sampling uniformly from an arbitrary (F − 1)-simplex may be accomplished by sam-

pling the barycentric coordinates with respect to the vertices (v1, . . . , vF ) from a Dirichlet

distribution with parameters α = {α1 = 1, α2 = 1, . . . , αF = 1}. The Cartesian coordinates

of the point may then be obtained from the mapping (11).

4.2 SIMPLICE sampling algorithm

Slice sampling is based on the “fundamental theorem of simulation” (Robert and Casella

2004, Theorem 2.15) which states that simulating a random variable or vector X from

the density f(x) is equivalent to sampling uniformly under the graph of f(x) – that is, to

simulating (X, Y ) from the joint density that is uniform on {(x, y) : 0 < y < f(x)}. If the

draws of y are ignored, then the marginal density of the draws of x is f(x). This theorem

also applies if f(x) is known only up to a normalizing constant.
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Algorithm 1 Outline of SIMPLICE sampling

1: y ⇐ u f(x0), where u is a random drawn from U(0, 1).

2: ∆ ⇐ initial sampling simplex as in Algorithm 2

3: Sample c ∼ Unif(∆)

4: while c /∈ Sx and f(c) <= y do

5: ∆ ⇐ shrunk simplex as in Algorithm 3

6: Sample c ∼ Unif(∆)

7: end while

8: return x1 = c

The proposed simplex slice (SIMPLICE) sampling algorithm is adapted from the uni-

variate slice sampling algorithm (Neal 2003). The goal is to sample a new point x1 from

density function f whose support is on a simplex with vertices comprising the columns of

a matrix V , using x0, the value drawn from the previous iteration. Let Unif(A) denote a

uniform distribution over region A. Let Sx be the support of f(x). The broad outline is

Algorithm 1, followed by specifics.

Line 2 in Algorithm 1 is motivated when f is very concentrated on a small part of its

support. In this case, searching the entire standard (F −1) simplex for a point in the “slice”

becomes inefficient, particularly if evaluating f is computationally expensive. Starting from

a smaller simplex randomly placed over x0 reduces the average number of evaluations per

iteration, possibly at the cost of increasing autocorrelation in the slice sampler output. Steps

3-5 of algorithm 2 create a matrix containing the vertices of a new simplex whose edge length

is a specified proportion q of that of the standard (F −1)-simplex V0. Steps 6-7 translate the

vertices of this smaller simplex to place it randomly over x0. The Figure next to Algorithm 2

illustrates how this smaller simplex is placed for a standard 2-simplex with 0 < q < 1. In

the trivial case when q = 1, we simply use V1 ≡ V0.

Pseudo-code is presented in Algorithm 3. The figure next to Algorithm 3 illustrates how

the shrinking is done. The idea is that for each vertex that is closer to x0 than to c, we slide

all the other vertices toward this vertex until we hit c. The dark grey and light grey areas
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Algorithm 2 Making the initial simplex.
1: V1 ⇐ V0

2: if 0 < q < 1 then

3: for i = 2, . . . , F do

4: V1,i ⇐ V0,i + q(V0,1 − V0,i)

5: end for

6: Sample U0 ∼ Dirichlet(1, 1, ..., 1)

7: V1 ⇐ V1 + (x0 − U0V1)J
>, where J> =

(1, . . . , 1)

8: end if

9: return V1

● x

● r

v1 v2

v3

Algorithm 3 Shrinking simplexes

1: V1 ⇐ V0

2: δ ⇐ bc − bx0 .

3: for all i such that δi < 0 do

4: for all j 6= i do

5: V1,j ⇐ V0,j + bc,i(V0,i − V0,j)

6: bc ⇐ V −1
1 cc

7: V0 ⇐ V1

8: end for

9: end for

● x0

● c

v1 v2

v3

are removed first and second.

Proof of correctness of the algorithm is given in the appendix.
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5. MARKOV CHAIN MONTE CARLO SAMPLING ALGORITHM

5.1 Marginalization for posterior and predictive sampling

The RAMPS algorithm is designed to approach independent sampling from the joint poste-

rior distribution of all unknown model parameters θ ≡ (φ, κ, σ2
tot,B). The posterior density

of θ given Y may be factored as

p(θ|Y ) = p(φ, κ|Y )p(σ2
tot|φ, κ, Y )p(B|φ, κ, σ2

tot, Y ). (12)

The RAMPS algorithm draws from p(θ|Y ) by sequentially drawing from the three conditional

densities on the right hand side of equation (12). We discuss each step in detail next.

5.2 Sampling from p(φ, κ|Y )

Step one of an MCMC iteration, say k, is to draw

p(φk, κk) ∼ p(φ, κ|Y ).

Note that this density is the joint posterior marginal density of φ and κ, not a conditional

density depending on values of other parameters from the previous iteration.

Sampling of this density is most efficient using the formulation in (9). The use of semi-

conjugate priors on σ2
tot and β simplifies the process of integrating these parameters out of

the resulting joint posterior distribution to obtain the following analytic form of p(φ, κ|Y )

up to a normalizing constant:

p(φ, κ|Y ) ∝ |Ξ|−1/2
∣∣X>Ξ−1X

∣∣−1/2

(
R̂SS(φ, κ)

2
+

F∑
j=1

bj

κj

)−(
PF

j=1 aj)−n−p∗
2 F∏

j=1

(
κ
−aj−1
j

)
,

(13)

where p∗ = 0 if a proper conjugate multivariate normal prior is used for β and p∗ = p if an

improper flat prior is used for β, R̂SS(φ, κ) = (Y−Xβ̂)>Ξ−1(Y−Xβ̂), and β̂ is the weighted

least squares estimate of β given φ and κ (and µβ and Σβ if a proper prior on β is used) in

the linear model (9).
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Algorithm 4 Slice sampling for φ and κ

1: y ⇐ u f(x0), where u ∼ Unif(0, 1) and x0 = (φ0, κ0)

2: (H ×∆) ⇐ initial sampling hyperrectangle and simplex

3: Sample c ∼ Unif(H ×∆)

4: while c /∈ Sφ × Sκ and f(c) <= y do

5: H ⇐ shrunk hypertectangle as in Neal (2003)

6: ∆ ⇐ shrunk simplex as in Algorithm 3

7: Sample c ∼ Unif(H ×∆)

8: end while

9: return x1 = c

If there were a way to draw independent samples from (13), then our algorithm would

produce independent draws from the joint posterior distribution of all model parameters.

This is, however, not possible, and, within each iteration of the MCMC sampler, we must

turn to iterative methods to draw from (13). Yan et al. (2007) found that using slice sam-

pling (Neal 2003) rather than the Metropolis-Hastings algorithm (Hastings 1970) reduced

autocorrelation in the MCMC output.

Our slice sampling algorithm for φ and κ combines the shrinking-hyperrectangle method

described in Neal (2003) for φ with the shrinking-simplex method proposed in Section 4 for

κ. Details are in Algorithm 4.

Note that evaluating the expression in (13) requires calculating two determinants and

a quadratic form. Computing the Cholesky decomposition of Ξ facilitates calculating both

the determinant |Ξ| and the quadratic form R̂SS. Unfortunately, Cholesky decomposition

is very computationally intensive (of order d3 on a dense matrix of dimension d). This step

of the algorithm, in which (13) may need to be evaluated repeatedly for different values of φ

and κ before an acceptable candidate is found, relies on the formulation in (9) rather than

that in (7). Let nzp be the length of Zp. Matrix Ξ is of dimension (n + p) × (n + p) (or

only n × n with an improper prior on β), whereas Ω has an additional block of dimension

nzp × nzp and therefore would be slower to decompose. The matrix X>Ξ−1X is only p × p,

14



so computation of its determinant is trivial.

5.3 Sampling from p(σ2
tot|φ, κ, Y )

With the aforementioned priors on (σ2
tot, κ), and β, it can be shown that p(σ2,k

tot |φk, κk, Y ) is

inverse gamma:

IG

(
F∑

j=1

aj +
n− p∗

2
,

F∑
j=1

bj

κk
j

+
R̂SS(φk, κk)

2

)
. (14)

Since R̂SS(φ, κ) has already been calculated in step 1, this step is completely straightforward.

5.4 Sampling from p(B|φ, κ, σ2
tot, Y )

It can be shown that p(Bk|φk, κk, σ2,k
tot , Y ) is multivariate normal N

(
B̂, σ2

tot

[
X>Ω−1X

]−1
)

,

where B̂ is the weighted least squares estimate of B in the linear model (7).

If only parameter estimation is needed, then B = β, and this step involves drawing β

from a multivariate normal density, all components of the mean and precision matrix of

which have already been calculated in step 1 as described above.

On the other hand, if prediction is also required, then B includes both β and Zp. This

step may be carried out by plugging φ(k) and κ(k) into the formulation in (7) and calculating

B̂ and the precision matrix X>Ω−1X. Cholesky decomposition of Ω facilitates computation

of X>Ω−1X. To speed up the Cholesky decomposition, the reformulation in Section 3 has

been carefully designed to make Ω block diagonal (so that the Cholesky decomposition can

be performed on each block individually) and as sparse as possible (so that sparse matrix

operations can be used). The matrix X>Ω−1X, which must also be Cholesky decomposed,

is of dimension p+nZp , where nZp is the number of prediction sites. Keeping this dimension

as small as feasible is the rationale for designing the reformulation so that not all sites that

contribute to observed data values have to be included in the prediction vector.
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6. EVALUATION OF ALGORITHM PERFORMANCE

A small simulation study was conducted to evaluate the frequentist performance of the

Bayesian models and computing strategy for combined areal and point-source data. Two

hundred datasets were simulated to imitate areal averages for the 99 counties in the state

of Iowa as well as point-source data from 250 locations generated randomly over the state.

A regularly-spaced grid of 403 points was used to underlie the areal data. The spherical

correlation function was used in simulating the spatial process. Distance was calculated as

great circle distance in hundred miles. The point-source data had an average of 3 observations

at each location, imitating multiple measurements within individual homes. A non-spatial

random effect for homes was incorporated into the simulation. In summary, there are 99

areal observations and 750 point-source observations.

For each dataset, three different model fits were performed: (a) using the point-source

data only, (b) using the areal averages only, and (c) fusing both kinds of data. In all cases,

flat priors were used on βa and βp, the intercepts for areal and point-source data respectively.

Vague inverse gamma priors with shape and scale parameters set to 0.01 were used for σ2
z

(variance of the spatial process), σ2
e,p and σ2

e,a (measurement error variances of point source

and areal data), and σ2
re (variance of non-spatial random effects for homes). A uniform prior

on (0, 3) was used for the spatial range parameter φ. For each run, a single MCMC sampler

was run for 1200 iterations. The first 200 were discarded as burn-in, and posterior means

and credible sets were calculated from the remaining 1000 iterations. Results are reported

in Table 1.

[Table 1 about here.]

The spatial range parameter φ is consistently over-estimated, indicating over-smoothing.

Using a finer grid to underlie the areal data might improve estimation of φ. The overestima-

tion of the variance parameters is due to using the posterior mean as the point estimate when

the marginal posterior density is right skewed; positive bias is expected in this case. With
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200 datasets in the simulation, the standard error in estimating the coverage is 0.015. Thus

there is no strong evidence of under- or over-coverage except that φ has slight under-coverage.

The simulation study also exemplifies the advantages of data fusion relative to analysis of

areal data alone or point-source data alone. Bias is smaller and interval widths are narrower

while coverage is at least as good when both types of data are used than when either is used

alone.

For simpler geostatistical models with the structure in (1), Smith, Yan, and Cowles

(2007) report on comparisons between the RAMPS algorithm as implemented in the R

package ramps and a blocked Metropolis-Hastings algorithm as implemented in the R package

spBayes (Finley, Banerjee, and Carlin 2007). Although the Metropolis-Hastings algorithm

produces more iterations per unit time, it suffers from high autocorrelation in the sampler

output. As a result, the RAMPS algorithm is shown to produce from 5.5 to 10.7 times as

many effective samples per unit time as the blocked M-H algorithm for parameters in the

variance/covariance structure.

7. REAL-DATA EXAMPLE OF PREDICTION

To predict the surface of uranium concentration over the state of Connecticut, both the areal

and point-source data were log-transformed prior to analysis as is standard practice with

uranium data. A regularly-spaced grid of 1117 points was laid over the state of Connecticut

to underlie the county averages for the 8 counties. Preliminary exploratory analysis of the

point-source data suggested that the exponential correlation function was the best-fitting

one-parameter spatial correlation function for these data. The maximum distance between

any two locations in Connecticut is 123 miles. For the analysis, improper flat priors were

placed on βp and βa, the intercepts for point-source and areal data respectively. Vague

inverse gamma priors with both shape and scale parameters set equal to 0.01 were placed on

all the variances (σ2
e,p, σ2

e,a and σ2
z). The uniform prior on the spatial correlation parameter

φ is set to be Unif(0, 100), which expresses the belief that the distance at which the spatial

correlation decayed to 0.05 was somewhere between 0 and 300 miles. A single MCMC
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sampler chain was run for 500 iterations. Figure 1 plots the mean and standard deviation of

the posterior predictive distribtution of the underlying spatial process at the points on the

grid based on the joint analysis of both areal and point-source data. The standard deviation

of the posterior predictive distribution is larger at the eastern end of the state, where no

point-source data were reported.

[Figure 1 about here.]

8. DISCUSSION

For estimation and prediction using complex spatial and spatiotemporal data, this paper

has presented a hierarchical Bayesian geostatistical model and an efficient MCMC-based

computational algorithm, called RAMPS, to fit it. Simulation study results indicate that

the model performs well with respect to bias and interval coverage for datasets including

both areal and point-source data and manifesting non-spatial as well as spatial correlation.

The proposed algorithm, based on slice-sampling for a marginalized posterior density with

support on the intersection of a hyperrectangle and a simplex, is shown to produce 5 to 10

times as many effective samples per unit time as standard Metropolis-with-Gibbs algorithms

for fitting Bayesian geostatistical models. A real data example illustrates the ability of

the model and algorithm to estimate the posterior predictive distribution of the underlying

spatial process, thereby making it possible to map the estimated surface and to quantify the

uncertainty in the map.

He, Hodges, and Carlin (2007) propose a reparameterization and marginalization of the

precision parameters (inverses of variances) in simpler gaussian spatial models using intrinsic

conditional autoregressive (ICAR) priors on the spatial random effects. Their simplex-based

slice sampling algorithm includes a grid-based stepping-out procedure to specify the initial

sampling area. This procedure would be feasible only when the dimension of the simplex

was very small, whereas the simplex-shrinking approach that we have proposed in our slice-

sampling algorithm is much more broadly applicable. They do not have a method of shrinking

the sampling area if many candidate points are rejected. Their ICAR-based models are
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simpler than our geostatistical models in several important respects: ICAR models have no

spatial correlation parameters corresponding to φ; spatial association is expressed in terms

of precision matrices rather than variance/covariance matrices; and their models do not

accommodate non-spatial correlation. Nevertheless, their finding of better MCMC sampler

performance after reparameterization and marginalization is very consistent with ours.

A. APPENDIX: PROOF OF CORRECTNESS OF THE SIMPLICE

ALGORITHM

Our proof of the correctness of our SIMPLICE algorithm for drawing from a density with

support on a standard simplex follows the general outline of Neal’s proof of the correctness

of the single-variable slice sampling algorithm in Section 4.3 of Neal (2003). Two proper-

ties must hold in order to guarantee convergence of the Markov chain constructed by the

algorithm to the target distribution: (a) the Markov chain must be ergodic and (b) each

update must leave the target distribution invariant. We consider here only the case in which

f(x) > 0 over the entire simplex, and, hence, ergodicity follows by the argument of Neal

(2003).

To show invariance, suppose that x0 is distributed as f(x). What must be shown is

that the selection of x1 in lines 3–8 of Algorithm 1 leaves the joint distribution of x0 and

x1 invariant. In this setting, this can be accomplished by demonstrating that the updates

satisfy detailed balance, which means that “the probability density for x1 to be selected as

the next state given that x0 is the current state is the same as the probability density for x0

to be selected as the next state given that x1 is the current state, for any states x0 and x1

within S” (Neal 2003, Section 4.2).

Like Neal’s single-variable slice sampler algorithm, our simplex slice sampling algorithm

requires intermediate steps based on the generation of random variates. As in his proof, we

let r denote those random choices and let π(r) denote a “one-to-one mapping with Jacobian

one (with regard to the real-valued variables), which may depend on x0 and x1,” and then
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demonstrate that

Pr(next state = x1 and intermediate choices = r|current state = x0)

= Pr(next state = x0 and intermediate choices = π(r)|current state = x1)

The required result is obtained by integrating over all possible values of r.

For specifying the initial sampling simplex, if the entire standard (F − 1)-simplex is used

(q = 1), then there is no randomness at this step and no mapping is required. If 0 < q < 1,

then the placement of the smaller initial sampling simplex around x0 depends on U0, a

random draw from the Dirichlet density. If x1 is not inside the initial sampling simplex

determined by U0, then the probability of passing from x0 to x1 equals the probability of

passing from x1 to x0 (both probabilities are 0), so detailed balance holds. We need to show

that if the initial sampling simplex contains x1, then the mapping π(U0) must give the value

that would have produced the same initial sampling simplex with x1 as the starting point.

That is, U1 = π(U0) must satisfy V0 + (x0 − V0U0)J
> = V0 + (x1 − V0U1)J

> or

U1 = U0 + V −1
0 (x1 − x0).

U1 produced by this mapping will be the barycentric coordinates of x1 with respect to V

and, as such, will be a random draw from a Dirichlet with all parameters equal to 1. Thus

the probability densities for U0 and U1 are the same. Furthermore, the Jacobian of the

transformation is one, as required.

The mapping π also maps the sequence of candidate points c generated when starting

from x0 to the same sequence of candidate points if starting from x1. This sequence of

candidate points determines how the sampling simplex is shrunk. The probability density

for selecting the first candidate point is obviously the same whether we begin from x0 or x1

because the initial sampling simplex is the same. If for any candidate point in the sequence,

the simplex-shrinking procedure starting from x0 (x1) produces a simplex that does not

contain x1 (x0), then we again are in the situation where the probability of passing from

x0 to x1 equals the probability of passing from x1 to x0 equals 0, so detailed balance holds.
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Otherwise, the candidate points produce the same sequence of shinking sampling simplexes,

each containing both x0 and x1, so that the probability densities for each rejected candidate,

as well as for the final accepted candidate, are the same whether we start from x0 or x1.

This establishes “detailed balance.”
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Figure 1: Summary of uranium concentration analysis in Connecticut.
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Table 1: Summary of simulation results.
Point-source data only

Mean of 95% Credible Sets
Parameter Truth Post Means Width Coverage

φ 100.00 158.660 223.975 0.885
σ2

e,p 0.25 0.251 0.061 0.940
σ2

z 0.40 0.631 1.095 0.970
σ2

re 0.20 0.202 0.157 0.935
βp 0.00 0.001 1.343 0.985

Areal data only
Mean of 95% Credible Sets

Parameter Truth Post Means Width Coverage
φ 100.00 159.402 228.098 0.895

σ2
e,a 0.25 0.242 0.334 0.895
σ2

z 0.40 0.690 1.317 0.975
βa 0.50 0.499 1.426 0.985

Fusion of point-source and area data
Mean of 95% Credible Sets

Parameter Truth Post Means Width Coverage
φ 100.00 144.362 179.080 0.905

σ2
e,p 0.25 0.251 0.062 0.940

σ2
e,a 0.25 0.263 0.250 0.965
σ2

z 0.40 0.563 0.822 0.980
σ2

re 0.2 0.202 0.138 0.940
βp 0.00 0.005 1.156 0.985
βa 0.50 0.501 0.181 0.945
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